
Insured Audit:
Code Review &
Protocol Security
Report

Protocol
Vox Finance

Date
15th May 2023

The UnoRe security research team has completed an initial time-boxed security review
of the Vox Finance protocol, with a focus on the security aspects of the application's
implementation.

Disclaimer
This report containing confidential information can be used internally by the Customer,
or it can be disclosed publicly after all the vulnerabilities are fixed - upon a decision of
the Customer.

A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to find
as many vulnerabilities as possible. We can not guarantee 100% security after the
review or even if the review will find any problems with your smart contracts.

Document Changelog:

24th March 2023 Initial Pre-Triage Insured Audit Report

20th April 2023 Active Monitoring Notes

15th May 2023 Finance Post-Triage Insured Audit Report

Technical Overview
The Vox Finance protocol allows holders of the VOX token to lock their tokens into the
VoxStakingPool or the VoxLiquidityFarm in exchange for rewards. The VoxStakingPool
has a minimumLock of 2 weeks and a maximumLock of 52 weeks, while the
VoxLiquidityFarm does not have locking periods. Both of the contracts have a different
withdrawalFee that is taken from the user. However, it is important to note that the fee
can be changed by the owner and set to withdrawalFeeMax.

The VOX token has a 4.0 % fee on each buy and sell transaction which is distributed
between marketingWallet, liquidityPool and a part of it is burned. More documentation
and information about the Tokenomics can be found here.

Threat Model

Roles & Actors
1. Users - able to stake their VOX tokens or deposit them to VoxLiquidityFarm.

2. Owner - able to set critical parameters like withdrawalFee, rewardsDuration,
setTreasury, recoverERC20, setLockingPeriods. It can also add and remove

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

https://docs.vox.finance/overview/tokenomics

addresses that are ExcludedFromFees and ExcludedMaxTransactionAmount.
The owner has extensive access to functions that are restricted or use the
onlyOwner modifier.

3. SwapManager - able to addLiquidity, buyAndBurn VOX tokens, and it is
approved to swap tokens for ETH. Also, it is ExcludedFromFees and
ExcludedMaxTransactionAmount.

4. Marketing Wallet - receives 50% of each fee charged on buy/sell transactions.

Internal Security QA
1. What in the protocol has value in the market? The VOX tokens that are locked

in the contract and rewardsToken.

2. What is the worst thing that can happen to the protocol? If the protocol is put
into DoS state or locked tokens are stolen.

3. In what case can the protocol/users lose money? If an attacker is able to drain
the VoxStakingPool / VoxLiquidityFarm or is able to claim the rewards of other
users because of miscalculations.

Severity classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

Impact - the technical, economic and reputation damage of a successful attack
Likelihood - the chance that a particular vulnerability gets discovered and exploited
Severity - the overall criticality of the risk

Security Review Summary
Review commit hash - 9c94722e32965b6298d885f6d323fc55bfa8a0e4

Audit Scope
The following smart contracts were in scope of the audit:

● VoxLiquidityFarm.sol

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

https://github.com/voxfinance/vox2.0-protocol/commit/9c94722e32965b6298d885f6d323fc55bfa8a0e4

● VoxStakingPool.sol
● VoxSwapManager.sol
● VoxToken.sol
● VoxTokenAirdrop.sol
● VoxVestingWallet.sol

The following number of issues were found, categorized by their severity:

● Critical & High: 1 issues
● Medium: 3 issues
● Low: 8 issues
● Informational: 12 issues

Note: The above summary of report findings at the Pre-Triage stage, most of these
issues were addressed/fixed in consecutive stages.

Summary Table of Our Findings

ID Title Severity Status

[H-01] There is no slippage control in
addLiquidity and swapToWeth
methods, which expose
strategy to sandwich attack

High Fixed

[M-01] Owner can steal all of the
stakingToken

Medium Fixed

[M-02] notifyRewardAmount can lead
to loss of yields for the users

Medium Fixed

[M-03] setRewardsDuration allows
setting near zero or enormous
rewardsDuration, which breaks
reward logic

Medium Confirmed

[L-01] Check array arguments have
the same length

Low Confirmed

[L-02] Use two-step ownership
transfer approach

Low Confirmed

[L-03] Avoid using tx.origin for
validation

Low Confirmed

[L-04] Missing 0 address check Low Confirmed

[L-05] Handle 0 reward case Low Confirmed

[L-06] Set bounds for multiplier Low Confirmed

[L-07] Transactions may revert
because of a deadline

Low Confirmed

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

[L-08] Add a timelock to restricted to
owner functions that set critical
values

Low Confirmed

[I-01] Using SafeMath when compiler
is ^0.8.0

Informational

[I-02] NatSpecs are incomplete Informational

[I-03] Make use of Solidity time units Informational

[I-04] Use custom errors instead of
require statements with string
error

Informational

[I-05] Not used events can be
removed

Informational

[I-06] Unclear error message Informational

[I-07] CEI pattern is not followed Informational

[I-08] Variables can be turned into an
immutable

Informational

[I-09] Most setter functions do not
emit events

Informational

[I-10] Improper naming Informational

[I-11] Contracts are not inheriting
their interfaces

Informational

[I-12] Solidity safe pragma best
practices are not used

Informational

Triage Fix Comments
[H-01] There is no slippage control in addLiquidity and swapToWeth methods, which expose

the strategy to sandwich attack

https://arbiscan.io/address/0xa0eebb0e5c3859a1c5412c2380c074f2f6725e2e#readContract

[M-01] Updated in repository and ownership on live contract has been renounced:

https://github.com/voxfinance/vox2.0-protocol/commit/8876fe77553ea7417d10cc63947ba21c

9dc323a6

https://arbiscan.io/tx/0x3f5ad1b1a850902e89cf648641f9e60e60e7fa2e61555c9607104dac2fd

6171c

[M-02] notifyRewardAmount can lead to loss of yields for the users, fixed in repository and

renounced on live contract

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

https://arbiscan.io/address/0xa0eebb0e5c3859a1c5412c2380c074f2f6725e2e#readContract
https://github.com/voxfinance/vox2.0-protocol/commit/8876fe77553ea7417d10cc63947ba21c9dc323a6
https://github.com/voxfinance/vox2.0-protocol/commit/8876fe77553ea7417d10cc63947ba21c9dc323a6
https://arbiscan.io/tx/0x3f5ad1b1a850902e89cf648641f9e60e60e7fa2e61555c9607104dac2fd6171c
https://arbiscan.io/tx/0x3f5ad1b1a850902e89cf648641f9e60e60e7fa2e61555c9607104dac2fd6171c

https://github.com/voxfinance/vox2.0-protocol/commit/3a667d9ebe5aff7685276fb0e4162564

f20cd592

https://github.com/voxfinance/vox2.0-protocol/commit/d720a946ef1330b974b341888836b3e

486e5faeb

https://arbiscan.io/tx/0x2e95894ae40944d2e290aa3d0e7e11f9dbd5ed0b9c9947fbb0c41796a7

00d0f8

[M-03] setRewardsDuration allows setting near zero or enormous rewardsDuration, which

breaks reward logic:

Live contracts were already renounced, repo changes (includes a missing semi-colon from a

previous commit)

https://github.com/voxfinance/vox2.0-protocol/commit/85614cbb43b306845acfd5c4324d449

294dfa0e0

[L-01] Check array arguments have the same length.

https://github.com/voxfinance/vox2.0-protocol/blob/main/VoxTokenAirdrop.sol

Line 26 includes this check

[L-02] Use two-step ownership transfer approach

Added to repository:

https://github.com/voxfinance/vox2.0-protocol/commit/847bb63cb997985417fd28f3762810cf

cfdc9159

[L-03] Avoid using tx.origin for validation

https://github.com/voxfinance/vox2.0-protocol/commit/598e750f6671ded1108a0bdd2b32369

10a8c7de2

[L-04] Missing 0 address check

https://github.com/voxfinance/vox2.0-protocol/commit/bceeb35964dbc0061121a693daf9fe94

9d6c8f83

[L-05] Handle 0 reward case

https://github.com/voxfinance/vox2.0-protocol/commit/1c387b9d89b6d68ae318c8bf83161a1

5c2098326

[L-06] Set bounds for multiplier

https://github.com/voxfinance/vox2.0-protocol/commit/d4fc7b1bab1d168a9df5a089a67a55fa

78a099b5

[L-07] Transactions may revert because of a deadline

https://github.com/voxfinance/vox2.0-protocol/commit/72d407a0ebd9894801eb93ee103b5ea

19589f821

[L-08] Add a timelock to restricted functions that set critical values

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

https://github.com/voxfinance/vox2.0-protocol/commit/3a667d9ebe5aff7685276fb0e4162564f20cd592
https://github.com/voxfinance/vox2.0-protocol/commit/3a667d9ebe5aff7685276fb0e4162564f20cd592
https://github.com/voxfinance/vox2.0-protocol/commit/d720a946ef1330b974b341888836b3e486e5faeb
https://github.com/voxfinance/vox2.0-protocol/commit/d720a946ef1330b974b341888836b3e486e5faeb
https://arbiscan.io/tx/0x2e95894ae40944d2e290aa3d0e7e11f9dbd5ed0b9c9947fbb0c41796a700d0f8
https://arbiscan.io/tx/0x2e95894ae40944d2e290aa3d0e7e11f9dbd5ed0b9c9947fbb0c41796a700d0f8
https://github.com/voxfinance/vox2.0-protocol/commit/85614cbb43b306845acfd5c4324d449294dfa0e0
https://github.com/voxfinance/vox2.0-protocol/commit/85614cbb43b306845acfd5c4324d449294dfa0e0
https://github.com/voxfinance/vox2.0-protocol/blob/main/VoxTokenAirdrop.sol
https://github.com/voxfinance/vox2.0-protocol/commit/847bb63cb997985417fd28f3762810cfcfdc9159
https://github.com/voxfinance/vox2.0-protocol/commit/847bb63cb997985417fd28f3762810cfcfdc9159
https://github.com/voxfinance/vox2.0-protocol/commit/598e750f6671ded1108a0bdd2b3236910a8c7de2
https://github.com/voxfinance/vox2.0-protocol/commit/598e750f6671ded1108a0bdd2b3236910a8c7de2
https://github.com/voxfinance/vox2.0-protocol/commit/bceeb35964dbc0061121a693daf9fe949d6c8f83
https://github.com/voxfinance/vox2.0-protocol/commit/bceeb35964dbc0061121a693daf9fe949d6c8f83
https://github.com/voxfinance/vox2.0-protocol/commit/1c387b9d89b6d68ae318c8bf83161a15c2098326
https://github.com/voxfinance/vox2.0-protocol/commit/1c387b9d89b6d68ae318c8bf83161a15c2098326
https://github.com/voxfinance/vox2.0-protocol/commit/d4fc7b1bab1d168a9df5a089a67a55fa78a099b5
https://github.com/voxfinance/vox2.0-protocol/commit/d4fc7b1bab1d168a9df5a089a67a55fa78a099b5
https://github.com/voxfinance/vox2.0-protocol/commit/72d407a0ebd9894801eb93ee103b5ea19589f821
https://github.com/voxfinance/vox2.0-protocol/commit/72d407a0ebd9894801eb93ee103b5ea19589f821

We have transferred ownership of VoxToken to a Safe instance with 2-of-3 signing policy, thus

ensuring that the functions can not be changed without approval from the entire project team.

We will look into implementing a timelock function in the future. All other contracts for staking

have been renounced.

https://arbiscan.io/tx/0x40aa14e4ad41bccf7598f5c2414059b60539883ea8dd38892c9355bebd

2155ac

Centralization Risk Areas
We have also identified several key areas within the protocol which contains centralization risks

which needs to be made aware to the community and have highlighted them below:

VoxLiquidityFarm (VoxLiquidityFarm | Address

0x87195340478b792cfb0986450c39b64846867716 | Arbiscan)

1. renounceOwnership (ownable.sol)

2. transferOwnership (ownable.sol)

3. setPaused (Pausable.sol)

4. setTreasury (VoxLiquidityFarm.sol)

5. setStakingPool (VoxLiquidityFarm.sol)

6. recoverERC20 (VoxLiquidityFarm.sol)

VoxStakingPool (VoxStakingPool | Address 0x0B21cfbe22b5730f050c2787379a8263FCCd276b |

Arbiscan)

1. renounceOwnership (ownable.sol)

2. transferOwnership (ownable.sol)

3. setPaused (Pausable.sol)

4. recoverERC20 (VoxStakingPool.sol)

5. setTreasury (VoxStakingPool.sol)

VoxSwapManager (VoxSwapManager | Address

0xe84713bE6d41475429bA65A6092973595b7b286A | Arbiscan)

1. renounceOwnership (ownable.sol)

2. transferOwnership (ownable.sol)

3. recover(VoxSwapManager.sol)

VoxToken (Vox Finance: VOX2.0 Token | Address

0xa0eebb0e5c3859a1c5412c2380c074f2f6725e2e | Arbiscan)

1. renounceOwnership (ownable.sol)

2. transferOwnership (ownable.sol)

3. enable Trading (VoxToken.sol)

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

https://arbiscan.io/tx/0x40aa14e4ad41bccf7598f5c2414059b60539883ea8dd38892c9355bebd2155ac
https://arbiscan.io/tx/0x40aa14e4ad41bccf7598f5c2414059b60539883ea8dd38892c9355bebd2155ac
https://arbiscan.io/address/0x87195340478b792cfb0986450c39b64846867716#code
https://arbiscan.io/address/0x87195340478b792cfb0986450c39b64846867716#code
https://arbiscan.io/address/0x0B21cfbe22b5730f050c2787379a8263FCCd276b
https://arbiscan.io/address/0x0B21cfbe22b5730f050c2787379a8263FCCd276b
https://arbiscan.io/address/0xe84713bE6d41475429bA65A6092973595b7b286A#code
https://arbiscan.io/address/0xe84713bE6d41475429bA65A6092973595b7b286A#code
https://arbiscan.io/address/0xa0eebb0e5c3859a1c5412c2380c074f2f6725e2e#code
https://arbiscan.io/address/0xa0eebb0e5c3859a1c5412c2380c074f2f6725e2e#code

4. removeLimits(VoxToken.sol)

5. disableTransferDelay(VoxToken.sol)

6. updateSwapTokensAtAmount (VoxToken.sol)

7. recover (VoxToken.sol)

VoxTokenAirdrop(VoxTokenAirdrop | Address

0x3279C1D0a34D60B84BCcba55EE08d220032958aF | Arbiscan)

1. renounceOwnership (ownable.sol)

2. transferOwnership (ownable.sol)

3. setToken (VoxTokenAirdrop.sol)

4. sendBatch(VoxTokenAirdrop.sol)

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

https://arbiscan.io/address/0x3279C1D0a34D60B84BCcba55EE08d220032958aF#code
https://arbiscan.io/address/0x3279C1D0a34D60B84BCcba55EE08d220032958aF#code

Initial Report Detailed Findings

[H-01] There is no slippage control in addLiquidity and

swapToWeth methods, which expose the strategy to

sandwich attack

Severity

Impact: High, as VoxToken contract will lose money due to sandwich attacks
Likelihood: Medium, since MEV is very prominent, the chance of that happening is
pretty high

Description
File: VoxSwapManager.sol

We can see the following code in these functions:

Function: addLiquidity

```
router.addLiquidity(

address(vox),
vox.weth(),
voxAmount,
wethAmount,
0, // slippage is unavoidable
0, // slippage is unavoidable
owner(),
block.timestamp

);
```

Function: swapToWeth

```
router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

voxAmount,
0,
path,
address(this),
block.timestamp

);

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report



```

Function: buyAndBurn

```
router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

wethAmount,
0,
path,
address(this),
block.timestamp

);
```

The “0”s here are the value of the amountOutMin argument which is used for slippage
tolerance. 0 value here essentially means 100% slippage tolerance. This is a very easy
target for MEV and bots to do a flash loan sandwich attack on each of the strategy’s
swaps, resulting in a very big slippage on each trade. 100% slippage tolerance can be
exploited in a way that the strategy (so the vault and the users) receive much less value
than it should have. This can be done on every trade if the trade transaction goes
through a public mempool.

Recommendations
Add a protection parameter to the above-mentioned functions, so that the VoxToken
contract can specify the minimum out amount.

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

[M-01] Owner can steal all of the stakingToken

Severity
Impact: High, as all of the staked tokens can be withdrawn
Likelihood: Low, as it requires a malicious/compromised owner

Description
The recoverERC20 function inside VoxStakingPool rightfully checks if the passed
tokenAddress is different from the rewardsToken address. However, it does not check if
it is not the same as the stakingToken address which should be the case as can be
seen from the comment:

```
function recoverERC20(address tokenAddress, uint tokenAmount)
external
onlyOwner {
// Cannot recover the staking token or the rewards token
require(
tokenAddress != address(rewardsToken),
"Cannot withdraw the staking or rewards tokens"

);
..

}

```

This could be exploited by a malicious or compromised owner. This admin privilege
allows the owner to sweep the staking tokens, potentially harming depositors by
rug-pulling.

Recommendations
Add an additional check inside the require statement:

tokenAddress != address(stakingToken)

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

[M-02] notifyRewardAmount can lead to loss of yields

for the users

Severity
Impact: High, because users` yield can be manipulated
Likelihood: Low, this is restricted function and only the owner can call it

Description
The notifyRewardAmount function takes a reward amount and extends the periodFinish
to now + rewardsDuration:

periodFinish = block.timestamp.add(rewardsDuration);

It rebases the leftover rewards and the new reward over the rewardsDuration period.

```
function recoverERC20(address tokenAddress, uint tokenAmount)
external
onlyOwner {
// Cannot recover the staking token or the rewards token
require(
tokenAddress != address(rewardsToken),
"Cannot withdraw the staking or rewards tokens"

);
..

}

```

This can lead to a dilution of the reward rate and rewards being dragged out forever by
malicious new reward deposits.

Let's take a look at the following example:

1. For the sake of the example, imagine the current rewardRate is 1000 rewards /
rewardsDuration.

2. When 10% of rewardsDuration has passed, a malicious owner calls
notifyRewards with reward = 0.

3. The new rewardRate = 0 + 900 / rewardsDuration, which means the rewardRate
just dropped by 10%.

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

4. This can be repeated infinitely. After another 10% of reward time passed, they
trigger notifyRewardAmount(0) to reduce it by another 10% again: rewardRate =
0 + 720 / rewardsDuration.

The rewardRate should never decrease by a notifyRewardAmount call.

Recommendations
There are two potential fixes to this issue:

1. If the periodFinish is not changed at all and not extended on every
notifyRewardAmount call. The rewardRate should just increase by rewardRate
+= reward / (periodFinish - block.timestamp).

2. Keep the rewardRate constant but extend periodFinish time by += reward /
rewardRate.

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

[M-03] setRewardsDuration allows setting near zero or

enormous rewardsDuration, which breaks reward logic

Severity
Impact: High, as it breaks reward logic
Likelihood: Low, as it requires an error from the owner's side or a
compromised/malicious owner

Description
File: VoxStakingPool.sol

notifyRewardAmount method will be inoperable if rewardsDuration is set to zero. It will
cease to produce meaningful results if rewardsDuration be too small or too big.

The setter does not control the value, allowing zero/near zero/enormous duration:

```
function setRewardsDuration(uint _rewardsDuration) external restricted {
require(
block.timestamp > periodFinish,
"Previous rewards period must be complete before changing the duration for the

new period"
);
rewardsDuration = _rewardsDuration;
emit RewardsDurationUpdated(rewardsDuration);

}
```

Division by the duration is used in notifyRewardAmount:

```
if (block.timestamp >= periodFinish) {
rewardRate = reward.div(rewardsDuration);

```

Recommendations
Check for min and max range in the rewardsDuration setter, as too small or too big
rewardsDuration breaks the logic.

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

[L-01] Check array arguments have the same length

When the sendBatch function is called inside VoxTokenAirdrop, two array-type
arguments are passed. Validate that the arguments have the same length so you do not
get unexpected errors if they don't.

[L-02] Use two-step ownership transfer approach

The owner role is crucial for the protocol as there are a lot of functions with the
onlyOwner and the restricted modifiers. Make sure to use a two-step ownership transfer
approach by using Ownable2Step from OpenZeppelin as opposed to Ownable as it
gives you the security of not unintentionally sending the owner role to an address you
do not control. Also, consider using only onlyOwner modifiers instead of using both
onlyOwner and restricted modifiers because they are basically the same and using
both only creates confusion.

[L-03] Avoid using tx.origin for validation

Inside VoxToken.sol, the following require statement is used:

```
require(
_holderLastTransferTimestamp[tx.origin] <
block.number,
"_transfer:: Transfer Delay enabled. Only one purchase per block allowed."

);
```
This can be easily bypassed if the function is called by a contract. Use msg.sender
instead of tx.origin.

[L-04] Missing 0 address check

In VoxStakingPool's constructor we can see that there is a 0 address check for
stakingToken but such check is missing for rewardsToken.

```
constructor(

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report



address _rewardsToken,
address _stakingToken

) {
rewardsToken = IERC20(_rewardsToken);
if (_stakingToken != address(0)) {
stakingToken = IERC20(_stakingToken);

}
}

```
Consider adding a 0 address check for rewardsToken as well.

[L-05] Handle 0 reward case

In getReward a check is missing if the rewards are equal to 0. Consider adding the
following check with a custom error:

```
function getReward() public nonReentrant updateReward(msg.sender) {

uint reward = rewards[msg.sender];
+ if(reward == 0) revert ZeroRewards();

if (reward > 0) {
rewards[msg.sender] = 0;
rewardsToken.safeTransfer(msg.sender, reward);
emit RewardPaid(msg.sender, reward);

}

```

[L-06] Set bounds for multiplier

In setMultiplier the owner of the contract can set a new value for the multiplier.
However, there might be a problem if there is a compromised or malicious owner. Set a
max bound in setMultiplier.

[L-07] Transactions may revert because of a deadline

In the VoxSwapManager, the router.addLiquidity is called and the block.timestamp is
passed as deadline. This means that if the execution takes longer than the current
timestamp, the transaction will revert as it can be seen from the Uniswap

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

documentation. It is the same for
router.swapExactTokensForTokensSupportingFeeOnTransferTokens and
router.swapExactTokensForTokensSupportingFeeOnTransferTokens. Consider
changing it to block.timestamp + 2 minutes, for example, to give it a bit of tolerance.

[L-08] Add a timelock to restricted functions that set

critical values

It is a good practice to give time for users to react and adjust to critical changes. A
timelock provides more guarantees and reduces the level of trust required, thus
decreasing the risk for users. It also indicates that the project is legitimate. Here, no
timelock capabilities seem to be used. We believe this impacts multiple users enough to
make them want to react/be notified ahead of time.

Consider adding a timelock to functions like: setWithdrawalFee, setLockingPeriod, etc.

© 2023 Uno Re VOX Finance Insured Audit - Post Triage Final Report

